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ABSTRACT: The nonlinear problem of convective straight fins with temperature-dependent thermal conductivity and heat 
transfer coefficient has been tackled by the use of Leibnitz-Maclaurin Method (LMM) via Successive Differential Coefficients 
(SDC), which is a power series solution technique. Also, an exact implicit integral solution was constructed for the problem. 
The obtained solutions satisfy the physical boundary conditions. Benchmarks or validation tests of the LMM and the exact 
implicit integral solution together with numerical experiments demonstrated excellent agreements. Parametric analyses 

indicated that the thermal conductivity parameter ,β thermo-geometrical property ,ψ and the heat transfer mode m of 

fins characterize the key elements for the numerical computations and descriptions of  the fin tip temperatures 
,wθ fin 

base gradient temperature ( ),1θ ′ and fin efficiency .η The variability of the thermal conductivity and heat transfer 
coefficient demonstrated the physical usefulness and serves as a practical departure from the previously investigated 
constant scenarios of thermal conductivity and heat transfer coefficient. 

Keywords: Exact Implicit Integral Solution, Leibnitz-Maclaurin Method (LMM), Nonlinear Problem, Straight Fins, Success 
Differential Coefficients (SDC). 

——————————      —————————— 

1. INTRODUCTION 

Fins are highly conductive metallic surfaces that are used to increase the heat transfer of heating 

systems such as car radiators and heating units, heat exchangers, air-cooled engines, electrical 

transformers, motors, electronic transistors, refrigeration, cooling of oil carrying pipe, cooling 

electric transformers, cooling of computer systems and air conditioning. Other applications are 

petrochemical plants, gas treatment plants, natural gas liquefaction plants, air separationplants, 

helium liquefaction plants, etc. In nature, the ears of rabbit act as fins to release heat from the blood. 

Due to the vast applications of fins, experimental and theoretical studies of fins have dated back 

several years. Among others, many researchers had devoted efforts to fin design optimization and 

cost effectiveness for the end need to increase or enhance the rate of heat transfer.  Kraus et al. [1] 

had addressed important design guidelines for cooling electronic devices, and there are 

documentations of several fin surfaces and their characteristics [2, 3]. Thereare lots of literature in 

fins with novel contributions and various solution methods to the governing mathematical models. 
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The mathematical models resulting from the energy balance of finned surfaces are either partial or 

ordinary differential equations for the temperature distribution; depending also on whether the heat 

transfer scenarios are steady or unsteady states. It is important to state that most of the mathematical 

problems resulting from natural and scientific phenomena are non-linear. It is also known that quite a 

good number of the applications of fins use variable or temperature-dependent thermal conductivity 

and heat transfer coefficient. This is because fins with variable thermal conductivity and heat transfer 

coefficient are more physically realistic, which are as a result of large temperature difference that 

exists within the fins. The resulting non-linear problem gives a unified model equation for the heat 

transfer mechanisms of conduction, convection, thermal radiation, nucleate boiling and many more 

other heat transfer modes, which are discussed in Holman [4], Moitsheki et al. [5], Ganji and 

Dogonchi [6]. It must be said here that finding exact analytical results for non-linear equations are 

quite elusive, if not impossible. Therefore, many thermal engineers and researchers have resorted to 

using approximate or semi-analytical solutions and numerical experiments in order to gain insights.  

The semi-analytical methods such as the perturbation method (PM), homotopy perturbation method 

(HPM), variational iteration method (VIM), homotopy analysis method (HAM), decomposition 

method (DM) and differential transform method (DTM) are powerful mathematical techniques that 

proffer solutions for both linear and non-linear problems. The literature is rife in the use of these and 

other techniques in the solutions and analyses of fin problems. Recently, Mebine and Olali [7] used 

Leibnitz-Maclaurin Method (LMM) via Successive Differential Coefficients (SDC)to solve the 

problem of convective straight fins with temperature-dependent thermal conductivity. It was 

observed that there was an excellent performance of the LMM when compared to the results of 

DTM, HPM and HAM. 
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The major concern of this work is of two-fold. Firstly, it is complementary to the work of Mebine 

and Olali [7]. Secondly, the work is aimed to further validate the LMM by consideringboth 

temperature-dependent thermal conductivity and heat transfer coefficient to enhance the 

investigation of other heat transfer mechanisms such as laminar film boiling or condensation, laminar 

natural convection, turbulent natural convection, nucleate boiling and radiation in a unified 

temperature distribution model in straight fins. The variability of thermal conductivity and heat 

transfer coefficient is physically meaningful and is intendedto serve as a practical departure from the 

previously investigated temperature-dependent thermal conductivity and constant heat transfer 

coefficient.The sections that follow hereafter are the Mathematical Formulations, Integral and some 

Exact Results, Leibnitz-Maclaurin Method of Solution, Analyses of Results, and Concluding 

Remarks. 

 

2. MATHEMATICAL FORMULATIONS 

Consider a straight fin with a temperature-dependent thermal conductivity and heat transfer 

coefficient, with an arbitrary constant cross sectional area CA ; perimeter P and length b . The fin is 

attached to a base surface of temperature bT  and extends into a fluid of temperature aT , and its tip is 

insulated. The one-dimensional energy balance equation is given as follows: 

( ) ( ) 0)( =−−





abC TTTPh
dx
dTTk

dx
dA , (1) 

whereT is temperature, )(Tk is the temperature-dependent thermal conductivity of the fin material, 

P is the fin perimeter, and )(Th is the temperature-dependent heat transfer coefficient. The 

temperature-dependent thermal conductivity and the heat transfer coefficient of the material are 

respectively assumed as follows: 

( ) ( )[ ]aa TTkTk −+= λ1 ,   (2) 
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where ak is the thermal conductivity at the ambient fluid of the fin temperature, while bh is the heat 

transfer coefficient at the fin base,λ is the parameter describing the variation of the thermal 

conductivity and m is a constant that expresses the nonlinearity of the variability of the heat transfer 

coefficient, and some typical values of it physically signifyvarious heat transfer modesor 

mechanisms and may vary from -6.6 to 5. However, in most practical applications the exponent m

lies between -3 and 3.  Some typical values of the exponent m  are 
4
1

− represents laminar film 

boiling or condensation, 
4
1  for laminar natural convection, 

3
1  for natural turbulent convection, 2  for 

nucleate boiling, 3 for radiation and 0 implies constant heat transfer coefficient. Unal [8] stated that 

exact solutions may be constructed for the steady-state one-dimensionaldifferential equation 

describing temperature distribution in a straight fin when the thermal conductivity is a constant and 

1,0,1−=m and 2=m . 

 

The temperature-dependent thermal conductivity and heat transfer coefficient equations (2) and (3) 

are deemed fit for many industrial or engineering applications. The appropriate dimensionless 

parameters are  
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Equation (1) is now rendered dimensionless as 
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The associated dimensionless boundary conditions are now written as 

,1when1

0when0

==

==

ξθ

ξ
ξ
θ

d
d

   (6a,b) 

whereθ is the dimensionless temperature, ξ  is the non-dimensional coordinate, β  is the non-

dimensional parameter describing thermal conductivity, andψ is the thermo-geometric fin parameter. 

The set of equations (5, 6) are investigated by various researchers such as Khani et al.[9]applied 

HAM and Kim et al. [10] utilized ADM and Taylor transformation. It was observed in Khani et al. 

[9] that ADM and HPM solutions fail when ψ  increases to a large number, but HAM 

solutionremained accurate. 

 

On the other hand, when only the thermal conductivity varies with temperature and the heat transfer 

coefficient becomes a constant (i.e. 0=m ), this situation has been solved with some semi-analytical 

methods, such as LMM [7], PM [11], HPM [11, 12], VIM [11,13], HAM [12,14], DTM [15] and 

ADM [16]. 

 

The heat transfer rate from the fin is found by using Newton’s law of cooling which states that “for a 

body cooling in a draft, that is, forced convection, the rate of heat loss is proportional to the 

difference in temperature between the body and the surrounding.” 

 Consider  

( )∫ −=
b

a dxTTPQ
0

.
  

(7) 

The ratio of the fin heat transfer rate to the heat transfer rate of the fin if the entire fin was at the base 

temperature is commonly known as the fin efficiency: 
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In other words, the fin efficiency is simply the parameter that indicates the effectiveness of a fin in 

transferring a given quantity of heat.  

 

The equations (5) together with the equations (6) are solved with the LMM via the SDC for the 

analyses of the problem of fin efficiency (8) of convective straight fins with temperature-dependent 

thermal conductivity and heat transfer coefficient.  

 

3. INTEGRAL AND SOME EXACT SOLUTIONS 

As a springboard to constructing an integral solution, the first derivative appearing in the governing 

equation (5) is eliminated, which transforms slightly the equation to 

0
2
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Now multiplying the equation (9) by 
ξ
θ

d
d  and integrating gives the general integral solution 
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where wθ defines the temperature at 0=ξ , which could be computed with the help of the condition  

( ) 11 =θ  by the equation 
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Equation (11) shows the connection between the temperature wθ at the fin tip and the thermo-

geometric parameter ψ . From the physical point of view, wθθ =)0( is the quantity of interest, and it 

is the rate of heat at the tip of the fin.Equation (10) is an exact implicit solution andin general, 

physically significant for numerical integration, except for 2−≠m and 3−≠m .Without loss of 

generality, by reason of the condition ( ) 11 =θ , it may be inferred from equation (10) that 

( ) ( ) ( ) ( ) ( )[ ]
( )β

θθββψ
θ

+++

+−+−+++
=′

++

1)3)(2(
32322

1
232

mm
mmmm m

w
m
w .(12) 

Equation (12) is a general relationship that connects the temperature gradient at the base of the fin 

( )1θ ′ to the temperature wθ at the tip of the fin, the variable thermal conductivity parameter ,β the 

thermo-geometric parameter ,ψ and the heat transfer mode m .Equation (12) is acceptableexcept for

3,2 −−≠m and 1−≠β . Similar derivations to equations (10), (11) and (12) are equally deduced by 

Latiff et al. [17] using symmetry reduction methods.   

Other exact results for constant thermal conductivity 0=β  and 2−≠m derived by Min-Hsing [18], 

Abbasbandy and Shivanian [19], and Haq and Ishaq [20] are  
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where 12 F is the hypergeometric function as represented in Abramowitz and Stegun [21]: 
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Specifically, for constant thermal conductivity 0=β , the following exact results also hold: 
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where ( ) ( )∫=
z

0

2t-expzerfi dt . Equations (15, 16) are also reported in Abbasbandy and Shivanian 

[19]. It is worth stating here that the exact results are vital for the purpose of comparisons with the 

LMM and numerical computations.  

 

4. LEIBNITZ-MACLAURIN METHOD OF SOLUTION 

For two differentiable and continuous functions, say u and v , which are functions of say x , Leibnitz 

concise formula for the thn differential coefficient of their product is: 
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The Leibnitz’s formula is applied to the differential equations (5, 6) in obtaining a recurrence relation 

between successive differential coefficients. This forms a step towards finding a power series 

solution of the problem at hand.  

 

In the application of Leibnitz’s formula, the solution of the problem is written in terms of Maclaurin 

series which is a special case of Taylor series, such that 
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From the boundary conditions, it is observed that the value of wθθ =)0( is unknown as it is in the 

integral solution (10), which would be computed with the help of condition ( ) 11 =θ . The recurrence 

relation for the SDC by the application of equation (19) to the equation (5) is now written as 
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The associated initial conditions are  

( ) ( ) 00,0 =′= θθθ w .                                                                                                                          (22) 

Equation (21) constitutes a system of equations for the coefficients ( ) ( ) ( )0,,0,0),0( )1()( +′′′′′ riv θθθθ  , 

which could be solved for any particular heat transfer mode m . With the equation (21) subject to the 

initial conditions (22), one can readily and easily compute recursively the first few SDC with pen on 

paper! One advantage of the SDC is that in some physical problems only few terms may be 

computed and it converges to the required result. Of course, with the aid of Symbolic Computation 

Software such as Maple, Mathematica and Matlab, as many terms as possible and as desired could be 
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computed! It is important to note that the Taylor series and the Maclaurin series only represent the 

function ( )ξθ  in their intervals of convergence.  

 

Apart from using the exact implicit integral solution (10) and the other exact solutions (13 - 18), all 

herein referred to asEXACT aimed at the validation of the LMM solutions (20), a Fifth-order Runge-

Kutta-Fehlberg numerical solution method implemented in MAPLE, herein referred to as NUM, is 

also utilized in this work.  

 

 

5. ANALYSES OF RESULTS 

The basic physically important parameters entering the problem arethe temperature gradient at the 

base of the fin ( ),1θ ′ the temperature wθ  at the tip of the fin, the fin efficiency ,η the variable 

thermal conductivity parameter ,β thermo-geometric parameter ,ψ and the heat transfer mode m . 

To discuss the effects of these parameters, tabular and graphical representations are made using 

respective values of ,β ,ψ and m  for the computations of ,wθ ( ),1θ ′ and η .  

 

Table 1 displays the temperature wθ at the tip of the finfor various heat transfer modes m with 

constant thermal conductivity. The LMM demonstrated excellent agreement with the NUM and 

EXACTresults. It is important to note here that the LMM, NUM and EXACT results have been kept 

at six-decimal places without rounding-up, whereas the DTM [22] results have been rounded-up. 

This accuracy gives high confidence in the validity of the LMM, and reveals its power of 

accountable judgement to engineering problems within its radius of convergence. It is observed from 

the table that the values of the temperature at the tip of the fin increases with increase in the heat 

transfer mode for 5.0,0 == ψβ , while the temperature at the tip of the fin due to 0.1,0 == ψβ
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decreases as m increasesfrom 3− to -1, and increases from -1 to 3. Physically, the thermo-geometric 

parameter ψ actually accounts for convective-conductive effects [22] in the fin system.  

 

Table 2 accounts for the effect of variable thermal conductivity that it increases the wall temperature. 

The other observations made in Table 1 are equally seen manifesting in Table 2. 

 

 

 

 

 

 

 

 (a) 5.0,0 == ψβ  (b) 0.1,0 == ψβ  

m  LMM NUM EXACT DTM [22] LMM NUM EXACT DTM [22] 

-3 0.830016 0.830016 0.830016 - 0.885959 - - - 

-2 0.858166 0.858166 0.858166 0.858211 0.727155 - - - 

-1 0.875000 0.875000 0.875000 0.875000 0.500000 0.500000 0.500000 0.500000 

0 0.886818 0.886818 0.886818 0.886819 0.648054 0.648054 0.648054 0.648054 

1 0.895803 0.895803 0.895803 0.895804 0.712256 0.712256 0.712256 0.712258 

2 0.902973 0.902973 0.902973 0.902974 0.751622 0.751622 0.751622 0.751635 

3 0.908888 0.908888 0.908888 0.908889 0.779145 0.779145 0.779145 0.779177 

Table 1: Heat transfer at the tip of the fin )0(θ with various heat transfer modes m for constant 
thermal conductivity with thermo-geometric fin parameter (a) 0=β , 5.0=ψ ; (b) 0=β , 0.1=ψ  
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 (a) 5.0,1.0 == ψβ  (b) 0.1,5.0 == ψβ  

m  LMM NUM EXACT LMM NUM EXACT 

-3 0.850537 0.850537 - 0.821447 - - 

-2 0.872005 0.872005 - 0.671272 - - 

-1 0.885770 0.885770 0.885770 0.645751 0.645751 0.645751 

0 0.895757 0.895757 0.895757 0.729675 0.729675 0.729675 

1 0.903502 0.903502 0.903502 0.772484 0.772484 0.772484 

2 0.909768 0.909768 0.909768 0.800260 0.800260 0.800260 

3 0.914988 0.914988 0.914988 0.820310 0.820310 0.820310 

Table 2: Heat transfer at the tip of the fin )0(θ with various heat transfer modes m for variable 
thermal conductivity with thermo-geometric fin parameter (a) 1.0=β , 5.0=ψ ; (b) 5.0=β , 0.1=ψ  
 

 

Figure 1: Dimensionless temperature θ versus dimensionless coordinateξ for various heat transfer 
modes m  for (a) 5.0,0 == ψβ ; (b) 5.0,1.0 == ψβ  
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Figure 1 depicts two scenarios-solid lines and field plots (arrows).  The solid lines are plots of the 

non-dimensional temperature θ  versus the non-dimensional coordinateξ for various heat transfer 

modes m  for (a) 5.0,0 == ψβ ; (b) 5.0,1.0 == ψβ , while the field plots or direction fields (the 

arrows) are for the particular cases of 500 ⋅=ψ  when 0=β and 500 ⋅=ψ  when 1.0=β with 

0=m , which are visualizations of ( ) 886818.00 =θ and ( ) 895757.00 =θ , respectively. These typify 

respectively the rate of heat at the wall in the absence of thermal conductivity parameter 0=β  and 

the presence of thermal conductivity parameter 1.0=β . No doubt, it is observed that a little increase 

in the thermal conductivity parameter β increases the wall temperature. Physically, thermal 

conductivity enhances the wall temperatures. From the Figure 1, it is equally seen that increase in the 

wall temperature ( )0θ depends on the heat transfer mode value m . Physically, it could be inferred 

that the need for the use of any particular heat transfer mode depends on the user in relation to the 

thermo-geometric ψ and thermal conductivity β parameters. 

 

The equation (12), which gives a general relationship among the fin tip temperature wθ , the fin base 

gradient temperature ( )1θ ′ , the mode of heat transfer m , the thermo-geometric ψ and thermal 

conductivity β  parameters are shown in Figure 2. The dashed lines are due to equation (12), while 

the points are the LMM solution. It is seen that the LMM result fits well the implicit exact solution 

(12). The Figure 2 shows that the fin tip temperature decreases to zero when the magnitude of the fin 

base gradient temperature increases, and the rate of decay to zero decreases with increasing ( )1θ ′  

when the value of m  decreases.It can also readily be observed from Figure 2 that the thermo-

geometric ψ enhances the fin base gradient temperature ( )1θ ′ at the absence of the thermal 

conductivity β parameter, while the presence of the thermal conductivity β parameter decreases the 

fin base gradient temperature ( )1θ ′  as the heat transfer mode m increases. Of the course, the 

maximum value of the fin tip temperature wθ is 1. 
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Figure 2: Fin tip temperature wθ  versus fin base temperature gradient ( )1θ ′  for various heat transfer 
modes m  for (a) 5.0,0 == ψβ ; (b) 1,0 == ψβ ; (c) 5.0,1.0 == ψβ ; (d) 1,5.0 == ψβ  
 

One of the most important characteristics in the study of fins in engineering applications is fin 

efficiency. The fin efficiency η for several heat transfer modes m  with the thermo-geometric 

parameter ψ are displayed in Figure 3 for various values of the thermal conductivity parameter .β
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The results show that 1−=m , which indicates a uniform local heat flux over the whole fin surface 

gives the result of 1=η  as clearly indicated for all values of β  in the Figure 3. It should be 

emphasized here that no physical system in real world gives 100 percent efficiency throughout! The 

LMM resultsfor η are, only valid for 1−≥m as displayed in Figure 3. It is observed that for 1−>m , 

the fin efficiency η decreases with increasing ψ  or m , and while the value ofβ increases the 

boundary layer of .ψ Obviously, ψ  and β  play important roles in describing the efficiency of heat 

loss of fins in relation to the particular mode of heat transfer m . 
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Figure 3: Fin efficiency versus ψ  for various heat transfer modes m  for (a) 0=β ; (b) 1.0=β ; (c) 5.0=β  
 
To further validate the LMM results, the temperature distributions for nucleate and radiation heat 

transfer modes are displayed specifically in Table 3 in comparisons with numerical results for 

00.100.0 ≤≤ ξ : Nucleate Boiling: (a) 3.0,1.0,2 === ψβm ; (b) 0.1,5.0,2 === ψβm ;Radiation: 

(c) 3.0,1.0,3 === ψβm ; (d) 0.1,5.0,3 === ψβm . It is clearly seen that the LMM agrees exactly 

with the numerical experiments, thereby demonstrating the efficiency of the LMM.Of course, there is 

no gaining that the respective roles of the thermo-geometric ψ and thermal conductivityβ parameters 

are equally convincingly characterized by the results. It is worthy to note that the temperature 

distribution increases with increasing dimensionless distance ξ  of the fin with the thermal radiation 

heat transfer playing a dominating role as compared to the nucleate boiling heat transfer. This 

demonstrates, once again, the fact that the engineering applications of fins depend on the specific 

environmental needin relation to the choice of the heat transfer mode, taking cognizance of the 

respective roles of the thermo-geometric and thermal conductivity parameters. A typical scenario is 

that the design of some electrical appliances used in temperate regions may not necessarily be the 

same with those used in cold regions. For example, some electronics and electrical appliances are 
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specifically designed for Nigeria and other African Countries, which are different from those 

designed to 

be used in 

Europe due 

to the great 

temperature 

difference 

year in, year 

out.  

 

 

 

 

 

 

 

 

 

 

 

𝜉𝜉 

 (a)Nucleate Boiling,  
𝑚𝑚 = 2,𝛽𝛽 = 0.1,
𝜓𝜓 = 0.3 

(b)Nucleate Boiling, 
𝑚𝑚 = 2,𝛽𝛽 = 0.5,𝜓𝜓
= 1.0 

(c)Radiation, 
𝑚𝑚 = 3,𝛽𝛽 = 0.1,𝜓𝜓
= 0.3 

(d)Radiation,𝑚𝑚
= 3,𝛽𝛽 = 0.5, 

 𝜓𝜓 = 1.0 

 LMM NUM LMM NUM LMM NUM LMM NUM 

0.00 0.962724 0.962724 0.800260 0.800260 0.963755 0.963755 0.820310 0.820310 

0.05 0.962815  0.962815 0.800718 0.800718 0.963843 0.963843 0.820712 0.820712 
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Table 3: Comparisons of LMM and Numerical solution for (a) Nucleate Boiling,𝑚𝑚 = 2,𝛽𝛽 = 0.1, 𝜓𝜓 =
0.3; (b) Nucleate Boiling, 𝑚𝑚 = 2,𝛽𝛽 = 0.5, 𝜓𝜓 = 1.0; (c) Radiation, 𝑚𝑚 = 3,𝛽𝛽 = 0.1, 𝜓𝜓 = 0.3; (d) Radiation, 
𝑚𝑚 = 3,𝛽𝛽 = 0.5, 𝜓𝜓 = 1.0.
 

 

6. CONCLUDING REMARKS 

The nonlinear problem of convective straight fins with temperature-dependent thermal conductivity 

and heat transfer coefficient has been tackled by the use of Leibnitz-Maclaurin Method (LMM) via 

0.10 0.963090 0.963090 0.802092 0.802092 0.964109 0.964109 0.821917 0.821917 

0.15 0.963548 0.963548 0.804386 0.804386 0.964552 0.964552 0.823931 0.823931 

0.20 0.964190 0.964190 0.807605 0.807605 0.965172 0.965172 0.826759 0.826759 

0.25 0.965015 0.965015 0.811757 0.811757 0.965971 0.965971 0.830409 0.830409 

0.30 0.966025 0.966025 0.816854 0.816854 0.966948 0.966948 0.834894 0.834894 

0.35 0.967220 0.967220 0.822907 0.822907 0.968105 0.968105 0.840228 0.840228 

0.40 0.968600 0.968600 0.829932 0.829932 0.969441 0.969441 0.846428 0.846428 

0.45 0.970167 0.970167 0.837948 0.837948 0.970958 0.970958 0.853514 0.853514 

0.50 0.971920 0.971920 0.846975 0.846975 0.972658 0.972658 0.861510 0.861510 

0.55 0.973862 0.973862 0.857037 0.857037 0.974541 0.974541 0.870445 0.870445 

0.60 0.975992 0.975992 0.868162 0.868162 0.976608 0.976608 0.880349 0.880349 

0.65 0.978313 0.978313 0.880380 0.880380 0.978862 0.978862 0.891258 0.891258 

0.70 0.980825 0.980825 0.893727 0.893727 0.981303 0.981303 0.903214 0.903214 

0.75 0.983530 0.983530 0.908241 0.908241 0.983933 0.983933 0.916262 0.916262 

0.80 0.986429 0.986429 0.923964 0.923964 0.986755 0.986755 0.930457 0.930457 

0.85 0.989523 0.989523 0.940945 0.940945 0.989770 0.989770 0.945856 0.945856 

0.90 0.992815 0.992815 0.959238 0.959238 0.992981 0.992981 0.962527 0.962527 

0.95 0.996307 0.996307 0.978901 0.978901 0.996390 0.996390 0.980546 0.980546 

1.00 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 
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Successive Differential Coefficients (SDC), which is a power series solution technique. Also, an 

exact implicit integral solutionwas constructed for the problem. The obtained solutions satisfy the 

physical boundary conditions. Benchmarks or validation tests of the LMM and the exact implicit 

integral solution together with numerical experiments demonstrated excellent agreements. The main 

conclusions are as follows: 

1) The temperature wθ at the tip of the fin increases with increase in the heat transfer mode m . 

2) The thermal conductivity β  and the thermo-geometric ψ parameters enhances the heat 

transfer of the fin, with β playing a dominant role. 

3) The thermo-geometric parameter physically accounts for convective-conductive effects in the 

fin system in the absence of thermal conductivity.  

4) The fin tip temperature decreases to zero when the magnitude of the fin base gradient 

temperature ( )1θ ′ increases, and the rate of decay to zero decreases with increasing fin base 

gradient when the value of m  decreases. 

5) The thermo-geometric parameter enhances the fin base gradient temperature at the absence of 

the thermal conductivity parameter 

6) The presence of the thermal conductivity parameter decreases the fin base gradient 

temperature as the heat transfer mode increases. 

7) . The fin efficiency η decreases with increasing ψ  or m for 1−>m , while the value of β

increases the layer of .ψ  

8) The variability of the thermal conductivity and heat transfer coefficientdemonstrated the 

physical usefulness and serves as a practical departure from the previously investigated 

constant scenarios of thermal conductivity and heat transfer coefficient. 

9) The LMM demonstrated high accuracy and excellent performance, characterizing its 

convergence to the exact implicit integral solution, simplicity, algorithmic nature, and not 

requiring any linearization, discretization, or perturbation. 
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